41 research outputs found

    Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization

    Full text link
    Many artificial intelligence (AI) problems naturally map to NP-hard optimization problems. This has the interesting consequence that enabling human-level capability in machines often requires systems that can handle formally intractable problems. This issue can sometimes (but possibly not always) be resolved by building special-purpose heuristic algorithms, tailored to the problem in question. Because of the continued difficulties in automating certain tasks that are natural for humans, there remains a strong motivation for AI researchers to investigate and apply new algorithms and techniques to hard AI problems. Recently a novel class of relevant algorithms that require quantum mechanical hardware have been proposed. These algorithms, referred to as quantum adiabatic algorithms, represent a new approach to designing both complete and heuristic solvers for NP-hard optimization problems. In this work we describe how to formulate image recognition, which is a canonical NP-hard AI problem, as a Quadratic Unconstrained Binary Optimization (QUBO) problem. The QUBO format corresponds to the input format required for D-Wave superconducting adiabatic quantum computing (AQC) processors.Comment: 7 pages, 3 figure

    Mapping constrained optimization problems to quantum annealing with application to fault diagnosis

    Get PDF
    Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.Comment: 22 pages, 4 figure
    corecore